Do Graphene Sensors Read Low-Frequency Neural Waves?


A biocompatible implant based on graphene safely measures and predicts brain states. Graphene Flagship scientists have developed a sensor based on CVD graphene that detects brain signals in a wide frequency band, from extremely low frequencies to high frequency oscillations.

Novel Neurotherapeutic Medical Technology

The sensor is biocompatible and could be used to measure and predict brain states. Furthermore, the graphene sensors could be used in chronic implants due to their high stability in the brain.

Lo studio è stato condotto dagli scienziati dei partner di Graphene Flagship, l'Istituto Catalano di Nanoscienza e Nanotecnologia (ICN2), l'Istituto di Microelettronica di Barcellona (CSIC), CIBER-BBN e ICREA, Spagna, l'Università Ludwig-Maximilians, Germania, e l'Università di Manchester, Regno Unito, in collaborazione con Graphene Flagship partner Multi Channel Systems GmbH, Germania.

Il consorzio ha dimostrato che i sensori basati sul grafene garantiscono l'accesso a una sfuggente regione a bassa frequenza dell'attività cerebrale. I metodi attuali per rilevare le onde cerebrali usano elettrodi metallici, che sono inefficaci nel misurare l'attività a frequenza molto bassa - conosciuta come la regione "infra-lenta". Grazie alla sensibilità del grafene, gli scienziati possono ora facilmente raccogliere informazioni da questa regione e dipingere un quadro migliore dell'attività cerebrale degli animali. Questo potrebbe costituire la base per nuovi tipi di tecnologia medica neuroterapeutica.

Utilizzando una tecnologia sviluppata dall'ICN2 e dall'Istituto di Microelettronica di Barcellona, nel quadro dei progetti europei Graphene Flagship e BrainCom, gli scienziati di Graphene Flagship hanno costruito un array di transistor che registrano e trasmettono informazioni sull'attività quando vengono impiantati nel cervello. Il sensore ha piccoli canali sulla superficie: quando entrano in contatto con il tessuto cerebrale, i segnali elettrici all'interno del cervello causano piccoli cambiamenti nella conduttività. Questi cambiamenti producono un segnale e vengono registrati per creare una "impronta digitale" dell'attività cerebrale.

“With our array of devices, based on CVD graphene, we can record signals from the infra-slow region with very high accuracy,” Jose Garrido, from Graphene Flagship partner ICN2, Spain, explains. “In the brain, there is a correlation between lower and higher frequencies of brain activity, so the lower frequencies tend to dictate what the higher frequencies look like.

We demonstrated that, by measuring the infra-slow activity, with frequencies below a tenth of a hertz, we can decode the ‘brain states’ of an animal.” Garrido believes this technology could lead to new treatments for brain disorders like epilepsy, as certain characteristic signal patterns could reveal ‘brain states’ likely to lead to seizures.

Graphene Sensors Provide Access to Infra-Slow Brain Waves

Per testare il dispositivo, lo hanno impiantato nel cervello di un ratto dal comportamento libero, monitorandolo continuamente. I segnali sono stati trasmessi senza fili utilizzando un headstage elettronico miniaturizzato sviluppato dal partner industriale Multichannel Systems. Gli scienziati hanno scoperto che le caratteristiche del segnale misurate durante diversi tipi di attività cerebrale, come durante i periodi di alta attività o durante il sonno - i cosiddetti 'stati cerebrali' - si correlavano molto bene ai segnali infra-lenti decodificati dall'impianto basato sul grafene.

Inoltre, Kostas Kostarelos e colleghi del partner Graphene Flagship dell'Università di Manchester, Regno Unito, hanno testato la biocompatibilità dei dispositivi. Non hanno trovato alcuna infiammazione, oltre a quella prevista per l'impianto del dispositivo, per l'intera durata di 12 settimane dei loro test, e il dispositivo non si è degradato durante questo periodo.

"È molto notevole vedere che possiamo identificare e correlare correttamente gli stati cerebrali degli animali con l'attività infra-lenta misurata", dice Garrido. Ora, il prossimo passo sarà quello di esplorare applicazioni commerciali. "Stiamo già collaborando con alcune aziende interessate a questa tecnologia, e puntiamo a tradurla in un prodotto - e, oltre a questo, portarla in cliniche e ospedali", conclude.

Serge Picaud, vice leader del pacchetto di lavoro sulle tecnologie biomediche della Graphene Flagship, commenta: "Le nuove tecnologie sono sempre un vettore di nuove scoperte. In questo caso, i sensori di grafene ci hanno permesso di accedere alle onde cerebrali infra-lente. Registrarle in modelli animali e in pazienti dimostrerà se possiamo effettivamente fare affidamento su queste nuove misurazioni per diagnosi precise e opzioni di trattamento in pazienti con gravi malattie cerebrali come l'epilessia".

Andrea C. Ferrari, responsabile scientifico e tecnologico della Graphene Flagship e presidente del suo comitato di gestione, aggiunge: "La Graphene Flagship ha riconosciuto presto il potenziale del grafene e dei materiali stratificati per applicazioni biologiche. Questo notevole lavoro ci avvicina alle applicazioni in questo settore, con un nuovo strumento abilitato dalle proprietà uniche del grafene".